Lineare Algebra Beispiele

Bestimme die Determinante [[x,x^2,1/x],[1,2x,-1/(x^2)],[0,2,2/(x^3)]]
Schritt 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Consider the corresponding sign chart.
Schritt 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Schritt 1.3
The minor for is the determinant with row and column deleted.
Schritt 1.4
Multiply element by its cofactor.
Schritt 1.5
The minor for is the determinant with row and column deleted.
Schritt 1.6
Multiply element by its cofactor.
Schritt 1.7
The minor for is the determinant with row and column deleted.
Schritt 1.8
Multiply element by its cofactor.
Schritt 1.9
Add the terms together.
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 2.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.4
Forme den Ausdruck um.
Schritt 2.2.1.2
Kombiniere und .
Schritt 2.2.1.3
Mutltipliziere mit .
Schritt 2.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.4.1
Mutltipliziere mit .
Schritt 2.2.1.4.2
Kombiniere und .
Schritt 2.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.3
Addiere und .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 3.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Mutltipliziere mit .
Schritt 3.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.2.1
Mutltipliziere mit .
Schritt 3.2.1.2.2
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Die Determinante einer -Matrix kann mithilfe der Formel bestimmt werden.
Schritt 4.2
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.2.1
Mutltipliziere mit .
Schritt 4.2.1.2.2
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 5
Vereinfache die Determinante.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Faktorisiere aus heraus.
Schritt 5.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.3
Forme den Ausdruck um.
Schritt 5.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Faktorisiere aus heraus.
Schritt 5.1.2.2
Faktorisiere aus heraus.
Schritt 5.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.4
Forme den Ausdruck um.
Schritt 5.1.3
Schreibe als um.
Schritt 5.1.4
Kombiniere und .
Schritt 5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Addiere und .
Schritt 5.2.2
Addiere und .